Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 13: 993675, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36160952

RESUMO

Cadmium (Cd) stress is one of the principal abiotic stresses that inhibit maize growth. The research was to explore (hemin chloride) Hemin (100 µmol L-1) on photosynthesis, ascorbic acid (AsA)-glutathione (GSH) cycle system, and polyamine metabolism of maize under Cd stress (85 mg L-1) using nutrient solution hydroponics, with Tiannong 9 (Cd tolerant) and Fenghe 6 (Cd sensitive) as experimental materials. The results showed that Hemin can increase leaf photosynthetic pigment content and ameliorate the ratio of Chlorophyll a/chlorophyll b (Chla/Chlb) under Cd stress. The values of ribose 1, 5-diphosphate carboxylase/oxygenase (RuBPcase) and phosphoenolpyruvate carboxylase (PEPCase), and total xanthophyll cycle pool [(violoxanthin (V), antiflavin (A) and zeaxanthin (Z)] increased, which enhancing xanthophyll cycle (DEPS) de-epoxidation, and alleviating stomatal and non-stomatal limitation of leaf photosynthesis. Hemin significantly increased net photosynthetic rate (Pn ), stomatal conductance (gs ), transpiration rate (Tr ), photochemical quenching coefficient (qP), PSII maximum photochemical efficiency (Fv/Fm ), and electron transfer rate (ETR), which contributed to the improvement of the PSII photosynthetic system. Compared with Cd stress, Hemin can reduce thiobartolic acid reactant (TBARS) content, superoxide anion radical (O2 -) production rate, hydrogen peroxide (H2O2) accumulation, and the extent of electrolyte leakage (EL); decreased the level of malondialdehyde (MDA) content and increased the activities of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT); slowed the decrease in dehydroascorbic acid reductase (DHAR) and monodehydroascorbate reductase (MDHAR) activity and the increase in glutathione reductase (GR) and ascorbate peroxidase (APX) activity in leaves; promoted the increase in AsA and GSH content, decreased dehydroascorbic acid (DHA) and oxidized glutathione (GSSG), and increased AsA/DHA and GSH/GSSG ratios under Cd stress. Hemin promoted the increase of conjugated and bound polyamine content, and the conversion process speed of free putrescine (Put) to free spermine (Spm) and spermidine (Spd) in maize; decreased polyamine oxidase (PAO) activity and increased diamine oxidase (DAO), arginine decarboxylase (ADC), ornithine decarboxylase (ODC) and S-adenosylmethionine decarboxylase (SAMDC) enzyme activities in leaves under Cd stress.

2.
PLoS One ; 14(4): e0215905, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31017964

RESUMO

The alpha subunit of the voltage gated human ether-a-go-go-related (hERG) potassium channel regulates cell excitability in a broad range of cell lines. HERG channels are also expressed in a variety of cancer cells and control cell proliferation and apoptosis. Hypoxia, a common feature of tumors, alters gating properties of hERG currents in SH-SY5Y neuroblastoma cells. In the present study, we examined the molecular mechanisms and physiological significance underlying hypoxia-altered hERG currents in SH-SY5Y neuroblastoma cells. Hypoxia reduced the surface expression of 150kDa form and increased 125kDa form of hERG protein expression in the endoplasmic reticulum (ER). The changes in protein expression were associated with ~50% decrease in hERG potassium conductance. ER retention of hERG 125kDa form by CH was due to defective trafficking and was rescued by exposing cells to hypoxia at low temperatures or treatment with E-4031, a hERG channel blocker. Prolonged association of hERG with molecular chaperone Hsp90 resulting in complex oligomeric insoluble aggregates contributed to ER accumulation and trafficking defect. Hypoxia increased reactive oxygen species (ROS) levels and manganese (111) tetrakis (1methyl-4-pyridyl) porphyrin pentachloride, a membrane-permeable antioxidant prevented hypoxia-induced degradation of 150kDa and accumulation of 125kDa forms. Impaired trafficking of hERG by hypoxia was associated with reduced cell proliferation and this effect was prevented by antioxidant treatment. These results demonstrate that hypoxia through increased oxidative stress impairs hERG trafficking, leading to decreased K+ currents resulting in cell cycle arrest in SH-SY5Y cells.


Assuntos
Pontos de Checagem do Ciclo Celular , Canais de Potássio Éter-A-Go-Go/metabolismo , Hipóxia Celular , Linhagem Celular Tumoral , Proliferação de Células , Retículo Endoplasmático/metabolismo , Células HEK293 , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Transporte Proteico , Espécies Reativas de Oxigênio/metabolismo
3.
Zhong Yao Cai ; 38(6): 1290-4, 2015 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-26762071

RESUMO

OBJECTIVE: To study the preparation of Oenothera biennis oil solid lipid nanoparticles and its quality evaluation. METHODS: The solid lipid nanoparticles were prepared by microemulsion technique. The optimum condition was performed based on the orthogonal design to examine the entrapment efficiency, the mean diameter of the particles and so on. RESULTS: The optimal preparation of Oenothera biennis oil solid lipid nanoparticles was as follows: Oenothera biennis dosage 300 mg, glycerol monostearate-Oenothera biennis (2: 3), Oenothera biennis -RH/40/PEG-400 (1: 2), RH-40/PEG-400 (1: 2). The resulting nanoparticles average encapsulation efficiency was (89.89 ± 0.71)%, the average particle size was 44.43 ± 0.08 nm, and the Zeta potential was 64.72 ± 1.24 mV. CONCLUSION: The preparation process is simple, stable and feasible.


Assuntos
Portadores de Fármacos , Lipídeos/química , Nanopartículas , Oenothera biennis/química , Ácidos Linoleicos/química , Tamanho da Partícula , Óleos de Plantas/química , Polietilenoglicóis , Ácido gama-Linolênico/química
4.
J Mol Med (Berl) ; 91(10): 1185-97, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23794090

RESUMO

UNLABELLED: The rapid growth of cancer cells is permitted by metabolic changes, notably increased aerobic glycolysis and increased glutaminolysis. Aerobic glycolysis is also evident in the hypertrophying myocytes in right ventricular hypertrophy (RVH), particularly in association with pulmonary arterial hypertension (PAH). It is unknown whether glutaminolysis occurs in the heart. We hypothesized that glutaminolysis occurs in RVH and assessed the precipitating factors, transcriptional mechanisms, and physiological consequences of this metabolic pathway. RVH was induced in two models, one with PAH (Monocrotaline-RVH) and the other without PAH (pulmonary artery banding, PAB-RVH). Despite similar RVH, ischemia as determined by reductions in RV VEGFα, coronary blood flow, and microvascular density was greater in Monocrotaline-RVH versus PAB-RVH. A sixfold increase in (14)C-glutamine metabolism occurred in Monocrotaline-RVH but not in PAB-RVH. In the RV working heart model, the glutamine antagonist 6-diazo-5-oxo-L-norleucine (DON) decreased glutaminolysis, caused a reciprocal increase in glucose oxidation, and elevated cardiac output. Consistent with the increased glutaminolysis in RVH, RV expressions of glutamine transporters (SLC1A5 and SLC7A5) and mitochondrial malic enzyme were elevated (Monocrotaline-RVH > PAB-RVH > control). Capillary rarefaction and glutamine transporter upregulation also occurred in RVH in patients with PAH. cMyc and Max, known to mediate transcriptional upregulation of glutaminolysis, were increased in Monocrotaline-RVH. In vivo, DON (0.5 mg/kg/day × 3 weeks) restored pyruvate dehydrogenase activity, reduced RVH, and increased cardiac output (89 ± 8, vs. 55 ± 13 ml/min, p < 0.05) and treadmill distance (194 ± 71, vs. 36 ±7 m, p < 0.05) in Monocrotaline-RVH. Glutaminolysis is induced in the RV in PAH by cMyc-Max, likely as a consequence of RV ischemia. Inhibition of glutaminolysis restores glucose oxidation and has a therapeutic benefit in vivo. KEY MESSAGE: Patients with pulmonary artery hypertension (PAH) have evidence of cardiac glutaminolysis. Cardiac glutaminolysis is associated with microvascular rarefaction/ischemia. As in cancer, cardiac glutaminolysis results from activation of cMyc-Max. The specific glutaminolysis inhibitor DON regresses right ventricular hypertrophy. DON improves cardiac function and exercise capacity in an animal model of PAH.


Assuntos
Glutamina/metabolismo , Ventrículos do Coração/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Diazo-Oxo-Norleucina/administração & dosagem , Diazo-Oxo-Norleucina/farmacologia , Modelos Animais de Doenças , Hipertensão Pulmonar Primária Familiar , Glucose/metabolismo , Glutamina/antagonistas & inibidores , Ventrículos do Coração/patologia , Hipertensão Pulmonar/etiologia , Hipertrofia Ventricular Direita/complicações , Hipertrofia Ventricular Direita/tratamento farmacológico , Hipertrofia Ventricular Direita/genética , Hipertrofia Ventricular Direita/metabolismo , Hipóxia , Masculino , Modelos Biológicos , Oxirredução , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Ratos
5.
Am J Respir Crit Care Med ; 187(8): 865-78, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23449689

RESUMO

RATIONALE: Pulmonary arterial hypertension (PAH) is a lethal, female-predominant, vascular disease. Pathologic changes in PA smooth muscle cells (PASMC) include excessive proliferation, apoptosis-resistance, and mitochondrial fragmentation. Activation of dynamin-related protein increases mitotic fission and promotes this proliferation-apoptosis imbalance. The contribution of decreased fusion and reduced mitofusin-2 (MFN2) expression to PAH is unknown. OBJECTIVES: We hypothesize that decreased MFN2 expression promotes mitochondrial fragmentation, increases proliferation, and impairs apoptosis. The role of MFN2's transcriptional coactivator, peroxisome proliferator-activated receptor γ coactivator 1-α (PGC1α), was assessed. MFN2 therapy was tested in PAH PASMC and in models of PAH. METHODS: Fusion and fission mediators were measured in lungs and PASMC from patients with PAH and female rats with monocrotaline or chronic hypoxia+Sugen-5416 (CH+SU) PAH. The effects of adenoviral mitofusin-2 (Ad-MFN2) overexpression were measured in vitro and in vivo. MEASUREMENTS AND MAIN RESULTS: In normal PASMC, siMFN2 reduced expression of MFN2 and PGC1α; conversely, siPGC1α reduced PGC1α and MFN2 expression. Both interventions caused mitochondrial fragmentation. siMFN2 increased proliferation. In rodent and human PAH PASMC, MFN2 and PGC1α were decreased and mitochondria were fragmented. Ad-MFN2 increased fusion, reduced proliferation, and increased apoptosis in human PAH and CH+SU. In CH+SU, Ad-MFN2 improved walking distance (381 ± 35 vs. 245 ± 39 m; P < 0.05); decreased pulmonary vascular resistance (0.18 ± 0.02 vs. 0.38 ± 0.14 mm Hg/ml/min; P < 0.05); and decreased PA medial thickness (14.5 ± 0.8 vs. 19 ± 1.7%; P < 0.05). Lung vascularity was increased by MFN2. CONCLUSIONS: Decreased expression of MFN2 and PGC1α contribute to mitochondrial fragmentation and a proliferation-apoptosis imbalance in human and experimental PAH. Augmenting MFN2 has therapeutic benefit in human and experimental PAH.


Assuntos
GTP Fosfo-Hidrolases/deficiência , Proteínas de Choque Térmico/deficiência , Hipertensão Pulmonar/fisiopatologia , Dinâmica Mitocondrial/fisiologia , Proteínas Mitocondriais/deficiência , Fatores de Transcrição/deficiência , Animais , Apoptose/fisiologia , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Tolerância ao Exercício/efeitos dos fármacos , Hipertensão Pulmonar Primária Familiar , Feminino , Humanos , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/patologia , Pulmão/citologia , Pulmão/patologia , Proteínas de Membrana/administração & dosagem , Proteínas de Membrana/deficiência , Dinâmica Mitocondrial/genética , Proteínas Mitocondriais/administração & dosagem , Miócitos de Músculo Liso/patologia , Miócitos de Músculo Liso/fisiologia , Atrofia Óptica Autossômica Dominante/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Ratos , Ratos Sprague-Dawley
6.
J Mol Med (Berl) ; 91(3): 333-46, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23247844

RESUMO

Pyruvate dehydrogenase kinase (PDK) is activated in right ventricular hypertrophy (RVH), causing an increase in glycolysis relative to glucose oxidation that impairs right ventricular function. The stimulus for PDK upregulation, its isoform specificity, and the long-term effects of PDK inhibition are unknown. We hypothesize that FOXO1-mediated PDK4 upregulation causes bioenergetic impairment and RV dysfunction, which can be reversed by dichloroacetate. Adult male Fawn-Hooded rats (FHR) with pulmonary arterial hypertension (PAH) and right ventricular hypertrophy (RVH; age 6-12 months) were compared to age-matched controls. Glucose oxidation (GO) and fatty acid oxidation (FAO) were measured at baseline and after acute dichloroacetate (1 mM × 40 min) in isolated working hearts and in freshly dispersed RV myocytes. The effects of chronic dichloroacetate (0.75 g/L drinking water for 6 months) on cardiac output (CO) and exercise capacity were measured in vivo. Expression of PDK4 and its regulatory transcription factor, FOXO1, were also measured in FHR and RV specimens from PAH patients (n = 10). Microarray analysis of 168 genes related to glucose or FA metabolism showed >4-fold upregulation of PDK4, aldolase B, and acyl-coenzyme A oxidase. FOXO1 was increased in FHR RV, whereas HIF-1 α was unaltered. PDK4 expression was increased, and the inactivated form of FOXO1 decreased in human PAH RV (P < 0.01). Pyruvate dehydrogenase (PDH) inhibition in RVH increased proton production and reduced GO's contribution to the tricarboxylic acid (TCA) cycle. Acutely, dichloroacetate reduced RV proton production and increased GO's contribution (relative to FAO) to the TCA cycle and ATP production in FHR (P < 0.01). Chronically dichloroacetate decreased PDK4 and FOXO1, thereby activating PDH and increasing GO in FHR. These metabolic changes increased CO (84 ± 14 vs. 69 ± 14 ml/min, P < 0.05) and treadmill-walking distance (239 ± 20 vs. 171 ± 22 m, P < 0.05). Chronic dichloroacetate inhibits FOXO1-induced PDK4 upregulation and restores GO, leading to improved bioenergetics and RV function in RVH.


Assuntos
Ácido Dicloroacético/administração & dosagem , Fatores de Transcrição Forkhead/metabolismo , Glucose/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Proteína Forkhead Box O1 , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/fisiopatologia , Oxirredução/efeitos dos fármacos , Condicionamento Físico Animal , Piruvato Desidrogenase Quinase de Transferência de Acetil , Ratos , Regulação para Cima/efeitos dos fármacos , Disfunção Ventricular Direita/metabolismo , Disfunção Ventricular Direita/fisiopatologia
7.
Am J Respir Crit Care Med ; 183(8): 1080-91, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21148721

RESUMO

RATIONALE: The etiology of hepatopulmonary syndrome (HPS), a common complication of cirrhosis, is unknown. Inflammation and macrophage accumulation occur in HPS; however, their importance is unclear. Common bile duct ligation (CBDL) creates an accepted model of HPS, allowing us to investigate the cause of HPS. OBJECTIVES: We hypothesized that macrophages are central to HPS and investigated the therapeutic potential of macrophage depletion. METHODS: Hemodynamics, alveolar-arterial gradient, vascular reactivity, and histology were assessed in CBDL versus sham rats (n = 21 per group). The effects of plasma on smooth muscle cell proliferation and endothelial tube formation were measured. Macrophage depletion was used to prevent (gadolinium) or regress (clodronate) HPS. CD68(+) macrophages and capillary density were measured in the lungs of patients with cirrhosis versus control patients (n = 10 per group). MEASUREMENTS AND MAIN RESULTS: CBDL increased cardiac output and alveolar-arterial gradient by causing capillary dilatation and arteriovenous malformations. Activated CD68(+)macrophages (nuclear factor-κB+) accumulated in HPS pulmonary arteries, drawn by elevated levels of plasma endotoxin and lung monocyte chemoattractant protein-1. These macrophages expressed inducible nitric oxide synthase, vascular endothelial growth factor, and platelet-derived growth factor. HPS plasma increased endothelial tube formation and pulmonary artery smooth muscle cell proliferation. Macrophage depletion prevented and reversed the histological and hemodynamic features of HPS. CBDL lungs demonstrated increased medial thickness and obstruction of small pulmonary arteries. Nitric oxide synthase inhibition unmasked exaggerated pulmonary vasoconstrictor responses in HPS. Patients with cirrhosis had increased pulmonary intravascular macrophage accumulation and capillary density. CONCLUSIONS: HPS results from intravascular accumulation of CD68(+)macrophages. An occult proliferative vasculopathy may explain the occasional transition to portopulmonary hypertension. Macrophage depletion may have therapeutic potential in HPS.


Assuntos
Antígenos CD/imunologia , Antígenos de Diferenciação Mielomonocítica/imunologia , Síndrome Hepatopulmonar/imunologia , Macrófagos/imunologia , Animais , Antígenos CD/fisiologia , Antígenos de Diferenciação Mielomonocítica/fisiologia , Malformações Arteriovenosas/etiologia , Malformações Arteriovenosas/fisiopatologia , Modelos Animais de Doenças , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Síndrome Hepatopulmonar/etiologia , Humanos , Pulmão/irrigação sanguínea , Pulmão/citologia , Pulmão/imunologia , Macrófagos/fisiologia , Masculino , Músculo Liso Vascular/fisiopatologia , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Óxido Nítrico Sintase Tipo II/fisiologia , Fator de Crescimento Derivado de Plaquetas/antagonistas & inibidores , Fator de Crescimento Derivado de Plaquetas/fisiologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/fisiologia , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/fisiologia
8.
Am J Physiol Heart Circ Physiol ; 292(5): H2532-9, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17277016

RESUMO

G protein-coupled receptors play a pivotal role in regulating cardiac automaticity. Their function is controlled by regulator of G protein signaling (RGS) proteins acting as GTPase-activating proteins for Galpha subunits to suppress Galpha(i) and Galpha(q) signaling. Using knock-in mice in which Galpha(i2)-RGS binding and negative regulation are disrupted by a genomic Galpha(i2)G184S (GS) point mutation, we recently (Fu Y, Huang X, Zhong H, Mortensen RM, D'Alecy LG, Neubig RR. Circ Res 98: 659-666, 2006) showed that endogenous RGS proteins suppress muscarinic receptor-mediated bradycardia. To determine whether this was due to direct regulation of cardiac pacemakers or to alterations in the central nervous system or vascular responses, we examined isolated, perfused hearts. Isoproterenol-stimulated beating rates of heterozygote (+/GS) and homozygote (GS/GS) hearts were significantly more sensitive to inhibition by carbachol than were those of wild type (+/+). Even greater effects were seen in the absence of isoproterenol; the potency of muscarinic-mediated bradycardia was enhanced fivefold in GS/GS and twofold in +/GS hearts compared with +/+. A(1)-adenosine receptor-mediated bradycardia was unaffected. In addition to effects on the sinoatrial node, +/GS and GS/GS hearts show significantly increased carbachol-induced third-degree atrioventricular (AV) block. Atrial pacing studies demonstrated an increased PR interval and AV effective refractory period in GS/GS hearts compared with +/+. Thus loss of the inhibitory action of endogenous RGS proteins on Galpha(i2) potentiates muscarinic inhibition of cardiac automaticity and conduction. The severe carbachol-induced sinus bradycardia in Galpha(i2)G184S mice suggests a possible role for alterations of Galpha(i2) or RGS proteins in sick sinus syndrome and pathological AV block.


Assuntos
Nó Atrioventricular/fisiopatologia , Bloqueio Cardíaco/fisiopatologia , Frequência Cardíaca , Proteínas RGS/metabolismo , Síndrome do Nó Sinusal/fisiopatologia , Nó Sinoatrial/fisiopatologia , Animais , Técnicas In Vitro , Camundongos , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA